Project Scheduling

Goals of the Unit

- Making the WBS into a schedule
- Understanding dependencies between activities
- Learning the Critical Path technique
- Learning how to level resources

Overview

- We have:
 - A WBS (activities)
 - Effort (duration) estimations for each element of the WBS
- We want to schedule activities, so that we know when each activity starts and ends, when we need resources, when we deliver
- Process:
 - Identify constraints (dependencies)
 - Allocate and level resources
 - Find the critical path and iterate till the plan is satisfactory
- Output: Gantt Chart

The modern Gantt chart

- Textual Outline + Calendar Graph
- Activities as bars (possibly annotated with names and resources)
- Deliverable (as diamonds)
- Activities can be grouped (information of group is derived by lower level activities)
- Dependencies among tasks

The modern Gantt chart and the WBS

Task	Effort	y 0	Day 1	Day 2	Day 3	Day 4	Day 5
▼ 1) Group 1	3d 7.75h	•					1
 1.1) Task 1 	3d 7.75h		\square				
▼ 2) Group 2	1w 1d 7h	•	·				·
 2.1) Task 2 	1d 7.25h						
 2.2) Task 3 	4d 7.75h						

spm - ©2014 adolfo villafiorita - introduction to software project management

Identify the constraints (dependencies)

Identify Dependencies

- The execution of activities is constrained by the logic of the plan (you do not build the roof before the foundations and structure of a house are laid completed)
- Hard and soft dependencies (definition in the next two slides).
- When using planning tools:
 - Specify only "hard" dependencies
 - "Soft" dependencies are typically inserted by the planning tool

Hard Dependencies

- Not much you can do about it...
- They might either derive:
 - From the project "logic" (e.g. testing has to come after coding)
 - From external dependencies (e.g. a contract sign-off; a particular alignment of planets is necessary to launch a spacecraft)
- Eliminating hard dependencies can be done, at a cost (e.g., increased risk, re-work)

Soft Dependencies

- Due to a choice among all possible alternative plans
- They might either derive:
 - From discretionary choices (e.g., the PM chooses the order in which modules are to be developed)
 - From resource availability and leveling (e.g., the PM or the planning tool sequences two tasks relying on the same resource)
- Notice that, as time progresses, it might become difficult or impossible to "undo" soft dependencies (e.g. a resource is shared by different projects)

Task Dependency Relationships

- Finish-to-Start (FS)
 - B cannot start till A finishes
 - Most commonly used
- Start-to-Start (SS)
 - B cannot start till A starts
 - Perform experiment; monitor experiment
- Finish-to-Finish (FF)
 B cannot finish till A finishes
- Start-to-Finish (SF)
 - B cannot finish till A starts (rare)

Lead and Lag Time

- Dependencies between activities can have a non zero duration
- Lag time = delay introduced by the dependency is positive (some time passes between the two tasks)
- Lead time = the duration of the dependency is negative (the activities partially overlap)

Some rules of the thumb

- Use milestones (and deliverables) to clearly mark "phase" transitions (or some important transitions from an activity to another)
- Try and minimize task dependencies (to minimize delays due to some activities waiting for some other activities to end)
- Evaluate alternatives
- Certain activities might just depend on calendar (and be constrained by dates)
- Take into account all dimensions (cost, quality, and time): minimize time might increase costs, risks, and compromise quality

Critical Path Method

Critical Path

- Not all activities are equally important or critical in a plan
- The critical path method looks at those activities which determine the duration of a plan
- These activities constitute the critical path
- Any arbitrarily small delay in any activity in the critical path will delay the finish date of a project
- The computation is based on Network Diagrams (a graph representation of the plan)

Network Diagrams

- Developed in the 1950's
- A graphical representation of the tasks necessary to complete a project (plan as graph)
- Visualize the flow of tasks & relationships
- Two classic formats
 - AOA: Activity on Arc (or Activity on Arrow)
 - AON: Activity on Node
- Conventions:
 - Each task labeled with an identifier and a duration (in std. unit like days)... variations are possible
 - There is one start and one end event
 - Time goes from left to right

Network Diagrams

- AOA (Activity on Arrow) a.k.a ADM (Activity Diagramming Method):
 - Circles represents Events (e.g. 'start' or 'end' of a given task)
 - Lines representing Tasks, such as 'Design'
- AON (Activity on Node) a.k.a. PDM (Precedence Diagramming Method):
 - Tasks are on Nodes
 - Arcs represents dependencies between task

Graphical Formats

AOA: Activity on Arc

AON: Activity on Node

... which one is better?

AOA/AON Comparison

- AOA initially used by Walker and Kelly for PERT
- AON more flexible and easier to draw
- AOA simpler to use for certain algorithms

... we will stick (mostly) to AON

Example: AOA/AON Comparison

Consider the following plan:

Activity	Predecessors	Duration
A	None	3 months
В	None	4 months
С	A	3 months
D	А, В	1 month
E	В	2 months

Example: AOA/AON Comparison

 In the AOA notation, some dependencies might require "dummy" arcs and nodes to be introduced (*)

(*) Notice that, since we can/have to add nodes and arcs, a plan does not have a unique AOA associated to it Critical Path Computation

Slack & Float (synonyms)

- Free Slack
 - Slack an activity has before it delays next task
- Total Slack
 - Slack an activity has before delaying whole project
- Slack Time TS = TL TE
 - TE = earliest time an event can take place
 - TL = latest date it can occur w/o extending project's completion date or next activity

Critical Path Computation

- Goal: given a plan (activities, duration, and dependencies), determine Slack, Earliest and Latest dates of each activity
- Notation: AON with nodes represented as follows

Critical Path Computation

- A **forward pass** determines the earliest start and end dates of each activity in the plan
- A **backward pass** determines the latest start and end dates of each activity in the plan
- The difference between earliest start (end) and latest start (end) is the slack of an activity
- The **critical path** is the path in which all activities have zero slack
- A plan always has a critical path... changing the plan changes what activities are in the critical path

Example 1

Example 2

- "Informal approach": have a look at what activities can slide in a plan without moving the end date of a project (e.g. Task 3 is not in the critical path)
- CPM highlighted automatically by many Gantt charting tools

Critical Path Method Remarks

- Critical path refers just to duration and not to other characteristics such as risk or difficulty
- Activities which are not in the critical path <u>can</u> delay a plan, if the delay is long enough.
- Watch out for (nearly) critical paths: a delay in an activity in a non-critical path may make another path critical

Resource Allocation and Resource Leveling

A (simplified) Process

- Inputs:
 - the plan: activities, constraints, effort for each activity
 - project team (number, types, and availability of resources)
 - delivery dates (project constraints)
- Resource allocation:
 - the process by which a resource is assigned to a task, that is, is tasked with carrying out part of the work (effort) defined in a task
- Constraints:
 - according to availability and needs (e.g. the type of resource required for a given activity): no over-allocation (above maximum availability) (resource leveling)
- If no solution is found, <u>if you may</u>, variate some hypotheses (e.g. increase team size, relax constraints) and iterate

Resource Allocation Examples

- Legenda:
 - each slot: 1week
 - R1 assigned to Task 1 at 50% of his time
 - R2 allocated full time to Task 2
 - R1 and R2 allocated @ 50% of their time to Task 3
- What it means:
 - R1 will work 20 hours on week 1 and 2 and 20 hours on week 3
 - R2 will work 40 hours on week 1 and 2 and 20 hours on week 3

Resource Usage

- For <u>manpower</u>: the amount of time each resource is needed at a given time
- For <u>equipment</u>: the number of items that are necessary at any given time
- For <u>material</u>: the amount of material which is required (consumed) at any given time

How is it computed?

- Resource usage is computed by summing the amount of work required for any given period
- That is a "vertical" sum over work assignments

• <u>Overallocation:</u> a situation in which a resource is used above his/her/its maximum capability

Example

-1w	T day	T+1w	T+2w	T+3w	T+4w
Task 1 [1	w	R 1 {50% of 100%}		
Task 2	2	w	R 2		
		Task 3	1w	R 1 {50% of 100%}	; R 2 {50% of 100%}
	Task 4	2	w	R 1	

	hours	hours	hours	hours	hours
R1	20	20		T1	
			20	Т3	
		40	40	T4	
Total R1	20	60	60		
R2	40	40		T2	
			20	Т3	
Total R2	40	40	20		

R1 is over allocated in W2 (T+1w) and W3 (T+2w)

spm - ©2014 adolfo villafiorita - introduction to software project management

More Complete Example

We draw the plan highlighting hard constraints. Deliverable has a unmovable delivery date

۵	Task	Effort I	Duration	1/Apr - 7/Apr	8/Apr - 14/Apr	15/Apr - 21/A
	 1) Task 1 2) Task 2 	1w 4d	1w 4d			
•	 3) Task 3 4) Deliverable	2d	2d			↓ 16/4/07 8:15 AM

Allocating two resources to Task 2 allows to satisfy the constraints

Problem: Task 1 and Task 3 require the same resource

... we are over-allocating Resource

Solution 1. Resource leveling... insert soft constraints in your plan so that no resource is over allocated (does not work above 100%)

Solution 2. Compression techniques (in a few lessons)

Some considerations:

- Resource 1 will work on the project full time.
- Resource 2 and Resource 3 needed just towards the end of the project (for Task 2)