
COCOMO -
Constructive Cost
Modeling

spm - ©2014 adolfo villaÞorita - introduction to software project management

The COCOMO model

¥ A family of empirical models based on analysis of
projects of different companies

¥ Long history from COCOMO-81 (1981) up to
COCOMO-II (1999, 2000)

¥ Extended to cover different development processes
and other aspects, such as quality (COQUALMO)

!2

spm - ©2014 adolfo villaÞorita - introduction to software project management

The COCOMO model

¥ COCOMO is based on a physical measure!
(source lines of code)

¥ Estimations become more precise as we move with
development

¥ Estimation errors:
Ð Initial estimations can be wrong by a factor of 4x

Ð As we move with the development process, estimations
become more precise!
(and the model takes into account more detailed parameters)

!3

spm - ©2014 adolfo villaÞorita - introduction to software project management

OUTPUT = A á(size)B áM

COCOMO: General Structure

¥ All COCOMO models have the same basic structure

¥ OUTPUT can be effort or time

¥ The fundamental measure is code size!
(expressed in source lines of code)

¥ Code size has an exponential effect on effort and size!
(although very close to 1)

¥ Various adjustment factors are used to make the model more
precise

!4

COCOMO 81

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO 81: Introduction

¥ Combination of three models with different levels of detail and
complexity:

ÐBASIC: quick estimation, early development stage

ÐINTERMEDIATE: more accurate, needs some product
characteristics, more mature development stage

ÐADVANCED: most detailed, requires more information

¥ In all COCOMO models:

Ð1 person month = 152 work-hours

ÐSLOC is DSI (delivered source instructions)!
(only the code delivered to the client. E.g. unit testing,
conversion code, utilities, ... do not count)

!6

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO 81: Types of Projects

¥ COCOMO 81 distinguishes among three different types of
projects:

Ð ORGANIC
* small teams, familiar environment, well-understood applications,

simple non-functional requirements (EASY)

Ð SEMI DETACHED
* project team may have experience mixture, system may have

more signiÞcant non-functional constraints, organization may
have less familiarity with application (HARDER)

Ð EMBEDDED
* tight constraints, including local regulations and operational

procedures; unusual for team to have deep application
experience (HARD)

!7

spm - ©2014 adolfo villaÞorita - introduction to software project management

T DEV = AT DEV (PM)B T DEV

COCOMO 81: Basic Model

!8

P M = AP M á(KSLOC)B P M

A B A B

Organic 2.4 1.05 2.5 0.38

Semi-detached 3 1.12 2.5 0.35

Embedded 3.6 1.2 2.5 0.32

where !

ÐKSLOC: thousands of delivered source lines of code!

ÐM is equal to 1 (and therefore it does not appear in the formulae)

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO exponential effect (vs. linear)

!9

size

ef
fo

rt

spm - ©2014 adolfo villaÞorita - introduction to software project management

Application Example

¥ Estimation of 50 KDSI for an organic project
Ð PM " = 2.4 (50) 1̂.05 ~= 146 mm

Ð TDEV" = 2.5 (371.54) 0̂.38 ~= 16 month

Ð Team" = 371.54 / 23.69 ~= 9 person

¥ The effect of different project parameters

!10

A B A B PM TDEV Team

Organic 2.4 1.05 2.5 0.38 146 16.6 8.8

Semi-
detached 3 1.12 2.5 0.35 240 17.0 14.1

Embedded 3.6 1.2 2.5 0.32 394 16.9 23.3

spm - ©2014 adolfo villaÞorita - introduction to software project management

Intermediate COCOMO

¥ It uses a more Þne grained characterization, which uses attributes
(effort multipliers) to take into account:

Ð functional and non-functional requirements

Ð project attributes

¥ The e!ort multipliers are organized in 4 classes and 15 sub-items.

¥ The importance of each attribute is qualitatively evaluated between
1 (very low) and 6 (extra high)

¥ Each value corresponds to multiplier, in the range [0.7, 1.66]!
(multiplier < 1 implies reduced cost)

¥ All the values are multiplied together to modulate effort

!11

spm - ©2014 adolfo villaÞorita - introduction to software project management

T DEV = AT DEV (P M)B T DEV

PMnominal = APM · (KSLOC)BP M

P M = PMnominal á! 15
i = i EM i

COCOMO 81: Intermediate Model

!12

A B A B

Organic 3.2 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 2.8 1.2 2.5 0.32

spm - ©2014 adolfo villaÞorita - introduction to software project management

Intermediate Model: Parameters

!13

Effort Adjustment Factors Very_Low Low Nominal High Very_High Extr_High

Product Attributes

Required Software Reliability RELY 0.75 0.88 1.00 1.15 1.40

Database Size DATA 0.94 1.00 1.08 1.16

Product Complexity CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Computer Attributes

Execution Time Constraints TIME 1.00 1.11 1.30 1.66

Main Storage Constraints STOR 1.00 1.06 1.21 1.56

Virtual Machine Volatility VIRT 0.87 1.00 1.15 1.30

Computer Turnaround Time TURN 0.87 1.00 1.07 1.15

Personnel Attributes

Analyst Capability ACAP 1.46 1.19 1.00 0.86 0.71

Applications Experience AEXP 1.29 1.13 1.00 0.91 0.82

Programmer Capability PCAP 1.42 1.17 1.00 0.86 0.70

Virtual Machine Experience VEXP 1.21 1.10 1.00 0.90

Programming Language Experience LEXP 1.14 1.07 1.00 0.95

Project Attributes

Use of Modern Programming Practices MODP 1.24 1.10 1.00 0.91 0.82

Use of Software Tools TOOL 1.24 1.10 1.00 0.91 0.83

Required Development Schedule SCED 1.23 1.08 1.00 1.04 1.10

spm - ©2014 adolfo villaÞorita - introduction to software project management

Attributes

¥ Attributes:
ÐPRODUCT" = RELY * DATA * CPLX

ÐCOMPUTER" = TIME * STOR * VIRT * TURN

ÐPERSONNEL" = ACAP * AEXP * PCAP * VEXP * LEXP

ÐPROJECT" = MODP * TOOL * SCED

¥ The impact of the parameters is between [0.09, 73.28]

¥ The PM (or team) estimate the values of parameters to predict
actual effort

¥ Example:

ÐIf the Òrequired software reliabilityÓ is low, the predicted effort is
0.88 of the one computed with the basic formula

!14

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO 81: Detailed Model

¥ The detailed model:
Ð has more detailed multipliers for each development phase

Ð organizes the parameters hierarchically, to simplify the
computation of systems made of several modules

¥ Projects are organized in four phases:
* Requirements Planning and Product Design (PRD)

* Detailed Design (DD)

* Code and Unit Test (CUT)

* Integration Test (IT)

¥ EM are given and estimated per phase

¥ Phase data is then aggregated to get the total estimation

!15

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO 81: Advanced Model

¥ Example of parameter:

!16

Cost
Driver

Rating RPD DD CUT IT

ACAP Very Low 1.8 1.35 1.35 1.5

Low 0.85 0.85 0.85 1.2

Nominal 1 1 1 1

High 0.75 0.9 0.9 0.85

Very High 0.55 0.75 0.75 0.7

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO: Maintenance Phase

¥ The COCOMO model can also be applied to predict
effort during system maintenance!
(system maintenance = small updates and repairs
during the operational life of a system)

¥ Most of development parameters apply both to
development and maintenance!
(some do not: SCED, RELY, MODP)

¥ One essential input is an estimation of the ACT!
(annual change trafÞc)

!17

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO 81: Maintenance

!18

ACT =
%Added + %Modified

100

PM = ACT · PM
nom

· EAF
maint

COCOMO II

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO II

¥ COCOMO II builds upon COCOMO 81 to take into
account:
Ð New development processes (e.g., spiral)

Ð Increased ßexibility in software development (e.g. reuse,
automatic code generation)

Ð Need for decision making with incomplete information

Ð New data about projects (not really a need, rather an
opportunity) (161 projects vs. 61)

!20

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO II: Models

¥ COCOMO II incorporates a range of sub-models that
produce increasingly detailed software estimates.

¥ The sub-models in COCOMO II are:
Ð Application Composition Model. For prototyping

Ð Early Design Model. Used when requirements are available but
design has not yet started.

Ð Post-architecture model. Used once the system architecture
has been designed and more information about the system is
available.

¥ Moreover:
Ð Reuse model. Used to compute the effort of integrating reusable

components.

!21

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO II: Model Stages

!22

Revised
COCOMO
(13 pars.)

System
Development

Object
Points

Revised
COCOMO
(23 pars.)

Concept
Ready

Requirements
Ready

Design
Ready

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO II: ED and PA Models

!23

PMNS = 2.94 · (SIZE)E · �n
i=1EMi

E = 0 .91 + 0.01!
5!

j =1

SFi

TDEVNS = 3.67 � (PMNS)F

All constants can (need
to) be adjusted with
organization-dependent
values.
!

(Strongly recommended:
2.94, effort multiplier and
3.67, schedule multiplier)

!
The difference between
ED and PA is the number
of parametersThe exponent depends on adjustment

factors!
(rather than being just a constant as in
COCOMO Õ81)

F = 0.28 + 0.01 ⇤
5X

j=1

SFi

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO II: Effort Multipliers

¥ From 7 (Early Design) to 17 (Post Architecture)
according to the level of detail needed

¥ For instance:

!24

Seminar on Cost Estima tion WS 02 / 03 Cocomo I and CocomoII

Tuesday, December 3 , 2002 , Nancy Merlo-Schett 12 of 20

Scale Factors for COCOMO II Early Design and Post-Architecture Models

Sca le
Factors (Wi)

Very Low Low Nomina l High Very High Extra High

PREC thoroughly
unprecedented

large ly
unprecedented

somewhat
unprecedented

genera lly
familiar

large ly
familiar

throughly
familiar

FLEX rigorous occasiona l
re laxation

some
re laxation

genera l
conformity

some
conformity

genera l goa ls

RESL little (20%) some (40%) often (60%) genera lly
(75%)

mostly (90%) full (100%)

TEAM very difficult
interactions

some difficult
interactions

basica lly
cooperative
interactions

large ly
cooperative

high ly
cooperative

seamless
interactions

PMAT We ighted average of "Yes" answers to CMM Maturity Questionna ire

Table 5 : Sca le factors for COCOMO II

4.3 COST DRIVERS

COCOMO II has 7 to 17 multiplicative factors that determine the effort required to complete a software project.
All cost drivers have qua lita tive ra ting leve ls ('extra low' to 'extra high') tha t express the impact of the driver and
a corresponding set of effort multiplier. The nomina l leve l a lways has an effort multiplier (EM) of 1 .00 , wh ich
does not change the estimated effort. So a cost driver's qua litative rating is translated into a quantitative one
for use in the mode l. The COCOMO II mode l can be used to estimate effort and schedule for the whole project
or for a project that consists of multiple modules. The size and cost driver ratings can be different for each
module , with the exception of the Required Deve lopment Schedule (SCED) cost driver and the sca le factors.
In the Early Design mode l a reduced set of multiplicative cost drivers is used as shown in Table 6 . The early
cost drivers are obta ined by combining the Post-Architecture mode l cost drivers.
For example , if a project will deve lop software that controls an a irplane 's flight, the Require d Software
Re liability (RELY) cost driver would be set to 'very high'. That rating corresponds to an effort multiplier of 1 .26 ,
meaning tha t the project will require 26% more effort than a typica l software project.

 Early Design cost drivers Post-Architecture cost drivers
(Counterpart combined)

Product re liability and complexity RCPX RELY, DATA, CPLX, DOCU

Required reuse RUSE RUSE

Pla tform difficulty PDIF TIME, STOR, PVOL

Personne l capability PERS ACAP, PCAP, PCON

Personne l experience PREX AEXP, PEXP, LTEX

Facilities FCIL TOOL, SITE

Required Deve lopment Schedule SCED SCED

Table 6 : Effort Multipliers for the Early Design and Post -Architecture

Source: http://www.iÞ.uzh.ch/req/courses/seminar_ws02/reports/Seminar_4.pdf

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO II: Scale Factors
¥ The exponent is computed by providing qualitative answers to the

following factors:
Ð Precedentedness : how novel the project is for the organization

Ð Flexibility : development ßexibility (e.g. rigidity of compliance to requirements)

Ð Design/Risk : thoroughness of design and risk resolution

Ð Team Cohesion

Ð Process Maturity: maturity with respect to the CMMI questionnaire

!25

Seminar on Cost Estimation WS 02/ 03 Cocomo I and CocomoII

Tuesday, December 3, 2002 , Nancy Merlo-Schett 12 of 20

Scale Factors for COCOMO II Early Design and Post-Architecture Models

Scale
Factors (Wi)

Very Low Low Nominal High Very High Extra High

PREC thoroughly
unprecedented

largely
unprecedented

somewhat
unprecedented

generally
familiar

largely
familiar

throughly
familiar

FLEX rigorous occasional
relaxation

some

relaxation

general

conformity

some

conformity

general goals

RESL little (20%) some (40%) often (60%) generally
(75%)

mostly (90%) full (100%)

TEAM very difficult
interactions

some difficult
interactions

basically
cooperative
interactions

largely

cooperative

highly

cooperative

seamless
interactions

PMAT Weighted average of "Yes" answers to CMM Maturity Questionnaire

Table 5: Scale factors for COCOMO II

4.3 COST DRIVERS

COCOMO II has 7 to 17 multiplicative factors that determine the effort required to complete a software project.
All cost drivers have qualitative rating levels ('extra low' to 'extra high') that express the impact of the driver and
a corresponding set of effort multiplier. The nominal level always has an effort multiplier (EM) of 1.00, which
does not change the estimated effort. So a cost driver's qualitative rating is translated into a quantitative one
for use in the model. The COCOMO II model can be used to estimate effort and schedule for the whole project
or for a project that consists of multiple modules. The size and cost driver ratings can be different for each
module, with the exception of the Required Development Schedule (SCED) cost driver and the scale factors.

In the Early Design model a reduced set of multiplicative cost drivers is used as shown in Table 6. The early
cost drivers are obtained by combining the Post-Architecture model cost drivers.

For example, if a project will develop software that controls an airplane's flight, the Required Software
Reliability (RELY) cost driver would be set to 'very high'. That rating corresponds to an effort multiplier of 1.26,
meaning that the project will require 26% more effort than a typical software project.

 Early Design cost drivers Post-Architecture cost drivers

(Counterpart combined)

Product reliability and complexity RCPX RELY, DATA, CPLX, DOCU

Required reuse RUSE RUSE

Platform difficulty PDIF TIME, STOR, PVOL

Personnel capability PERS ACAP, PCAP, PCON

Personnel experience PREX AEXP, PEXP, LTEX

Facilities FCIL TOOL, SITE

Required Development Schedule SCED SCED

Table 6: Effort Multipliers for the Early Design and Post-Architecture

Source: http://www.iÞ.uzh.ch/req/courses/seminar_ws02/reports/Seminar_4.pdf

Algorithmic
Techniques

Conclusions

spm - ©2014 adolfo villaÞorita - introduction to software project management

COCOMO Considerations

¥ A series of progressively more complex models

¥ COCOMO computes both D and E and manpower is derived from
D and E.!
(we often estimate E, decide M, and compute only D)

¥ Project cost estimates may be self-fulÞlling: the estimate deÞnes
the budget and the product is adjusted to meet the budget

¥ A precise application requires organizations to setup their own
measurement programs (to Þne-tune parameters)

¥ Models need to be adapted to changing technologies and the
technology changes fast... it might be difÞcult to keep it up to date

!27

spm - ©2014 adolfo villaÞorita - introduction to software project management spm

Algorithmic Techniques: Recap

¥ Based on system characteristics and productivity
metrics collected about past projects

¥ Different models
Ð Function Points:!

Req ☞ UFP ☞ FP, MM/FP !

Req ☞ UFP ☞ SLOC/UFP and COCOMO

Ð Object Points!
Screens, Reports, Modules ☞ NOP, NOP/Month

Ð COCOMO!
SLOC ☞ PDEV, TDEV ☞ Team Size = PDEV / TDEV

!28

spm - ©2014 adolfo villaÞorita - introduction to software project management

The Improvement ÒfactoryÓ

!29

Product
SpeciÞcation

Estimation

Development

Estimations
Collection

Estimations
Collection

Actual Data
Collection

Model Tuning

Organization
Tuning

estimation
not ok

Development Measurement
Program

Improvement
Program

